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Abstract. A fundamental time-scaling property of manipulator dynamics has been identified that
allows modification of movement speed without complclc dynamics recalculation. By exploiting
this property, it can be determined whether a planned trajcctory is dynamically realizable given
actuator torque limits, and if not, how to modify the trajectory to bring it within dynamic and
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1. lntroduction

‘Trajectory planning algorithms scldom incorporate extensive knowledge of the interaction
between inverse dynamics and actuator torque limits into the planning process. Past cfforts have
typically used fixed velocity limits of the joints as a way of determining how fast a trajectory
may be executed [8]. Due to the complex relationship between joint velocities and dynamics,
such a procedure is at best a very coarse approximation of the true influence of actuator limits
on trajectory speed. An cxact mcthod for determining the optimal velocity distribution for
a fixed path has been proposed in [13}, where dynamic programming was straightforwardly
applicd to minimizc energy under actuator and dynamic constraints. The computational cost of
such optimization approaches however may prevent their useful application.

We develop a fundamcental time-scaling property of manipulator dynamics that allows
trajectory planning and inverse dynamics to be cxactly and cfficiently coupled. The dynamic
realizability of a proposed trajectory can be readily determined, and a simple procedure to
modify the movement speed can be applied to render proposed trajectories realizable.

We presume that a time scquence of joint angles 8(t) = (8(t), 02(t), . . ., 04(t)) for an n-joint
manipulator has been proposed by the trajectory planner, where ¢ represents the time in the
interval 0 < t < ty. Because of fast recursive formulations of inverse dynamics {4, 7, 11}, for
cach sampling time ¢ the joint torques n(t) = (n,(t), na(t), ..., ny(t)) corresponding to 6(t)
can be efficiently found. The comparison of n(t) against motor torquc limits is therefore readily
accomplished, and it is straightforward to determine whether the proposed trajectory can be
realized by the actuators.

A more difficult task is to ascertain how to change the trajectory in case motor torque limits
are violated. Here we consider only changing the speed at which a manipulator follows a path,
where by speed change is meant a constant scaling of the velocity profile so that the total
movement duration is scaled without changing the actual path through space. It is not sufficient
mercly to slow down a trajectory, with the hope that a slower trajectory requires lower motor
torques, because some trajectorics can only be realized at higher speeds, and some trajectories
may not be realizable at any spced. Morcover, unless onc is carcful to employ an algorithm such
as is presented here, then modifying the movement speed requires that the inverse dynamics be
recomputed from scratch. ’

The algorithm presented here determines what speed range is permissible for the proposcd
trajectory given actuator torque limits. At the same time the nominal dynamics for the proposed
trajectory can be simply modified for the new trajectory, without dynamics recomputation.

2. Time Scaling and Trajectories

Suppose that some trajectory plan 0(t) has been fashioned. A new trajectory E_(t) will be defined
such that §(t) = 6(r), where r = r(t) is a monotonically increasing function of time with
r(0) = 0 and r{t() = ¢t; for some t; > 0. The function r(t) can be considered a time warp
which moves the arm along the same path but with a different time dependence, perhaps going
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slower along some points of the path and faster along others. r(t) must increase monotonically
because time cannot reverse itsclf, and 7(0) = 0 because the movement must start at the same

point.
To determine how the dynamics of the arm changes for the new trajectory, the time derivatives

of the joint angles are required. From the chain rule,

di(t) _ do(r)dr
dt ~ dr dt
or, using the dot notation for time derivativcs,

o(t) = d(r) (1)

where df(r)/dr has been written 8(r) because it takes the value § evaluated at r(t). Similarly,

B(t) = b(r)i(2)® + B(r)F(e) (2)

‘The dynamic equations of motion can be compactly written [4] as

n(t) = NQ(£)A() + A() - C(8(2)) - B(t) + g(B(t)) (3)

where

n(t) is the n-dimensional vector of net joint torques corresponding to the movement
point,

1(6(t)) is the n X n generalized inertia tensor of the manipulator,

C(8(t)) is the n X n X n position-dependent tensor in the formulation of the Coriolis
and centripetal torques, and

g(d(t)) is the position-dependent n-dimensional vector of gravity torques.

The notation for the velocity product term @ - C - @ is slightly unconventional, but has been
adopted for compactness. The product C- f is an n X n matrix with clement tjas ), C;j.,é.,,
which in turn is multiplicd against @ to yield an n X 1 vector.

In the following derivations, the acceleration and velocity dependent torques are treated

scparately and are designated as ng(t) = (nay(t), naa(t), ..., nan(t)). so that n(t) = ng(t) +
g(6(t)). For the new trajectory 8(t),

fa(t) = 1A + 8(¢) - C(2)) - B(e) (4)
Substituting from (1) and (2),
fa(t) = (NO(rNE(r) + B(r) - C(8(r)) - B(r) ¥ + WO(r))(r)¥ (5)
Rearranging and substituting from (3),

fia(t) = #na(r) + #1(8(r)) r) (6)
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‘Ihis is a potentially significant reformulation of dynamics, indicating how the underlying
dynamics changes when the time dimension of a trajectory changes. The new torque fg(t) is
related to the old mg(r) by the scaling factor #3 plus a term proportional to the generalized
momentum 1(8(r))@(r) of .the manipulator. Note that the gravity torque g(8(t)) = g(4(r)) is
not scaled since it is position dependent only, which is the reason for the separauon between
ng(t) and the gravity torques.

2.1 Constant Time Scaling

The simplest instance of (7) is when #(t) = 0, ie.. r{t) = ct for some constant ¢ > 0. If
¢ > 1 the movement is sped up; if ¢ < 1 the movement is slowed down. Then

falt) = cnefct) (1)

Interestingly, movement speed can be proportionally changed without affecting the underlying
dynamics very much, so long as the gravity contribution is separated from the acceleration and
velocity term contributions. ‘The relation was also noted by Bejzcy [1]. Humans apparently adopt
such a strategy when changing movement speed, perhaps to simplify the dynamics computation
[5)

This relation also shows that the velocity and acccleration terms of the dynamics would have
the same significance relative to each other for all specds of movement. For, the acccleration
term 1(0(¢))4(¢) is scaled by ¢ from (2), and the velocity term 4(t) - C(8(t)) - §(t) receives a
¢ factor for cach §(t). Thus both terms change equally with differing movement speeds. This
contradicts the normal assumption in the robotics literature, where in designing control systems
workers typically throw out the velocity terms because they are a nonlincar product, with the
presumption that they are significant only at higher speeds of movement [1,10]. For the slow
movement speeds of most manipulators, and hence because of the predominance of frictional
and gravitational effects, this is a rcasonable assumption [2]. But for consistency the acccleration
terms should be thrown out as well since they share the same significance as the velocity terms,
yet this is not done. In any case, future gencrations of robots will contain examples of fast
manipulators with low joint friction where dynamic cffects, both acceleration and velocity terms,
arc highly significant [2].

In the remainder of this paper, we assume the special case (7) and use it to determine
allowable specds of movement for a given trajectory. By allowable speed it is meant that the
trajectory is stretched or compressed uniformly to fit the allotted duration without changing
the path or the velocity profile shape. Constant scaling of velocity is a simple but important
method of bringing a trajectory within actuator constraints. Certainly there are many classes of
manipulator trajectories where an exact path through space must be followed, as in straight-line
Cartesian motions of the manipulator hand [9, 12], but where the time dependence along the
path is not strongly restricted. While non-uniform time scaling may yicld a realizable trajectory
where a constant scaling would not, results for the gencral case (6) arc not yet available while
other approaches [13] may be too computationally incflicicnt for routine use. Even morc difficult
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is path modification under actuator and dynamic constraints, for which no general results are
yet available (see however [6] for an approximate time-optimal trajectory planning solution).

3. Time Scaling of Trajectories to Satisfy Torque Limitations

Torque limits of actuators restrict how fast a manipulator may move along a trajectory. In
order to determinc whether a proposed trajectory f(t) violates actuator limits, the inverse
dynamics must be solved and the computed torques compared to these limits. Suppose we
have computed the acceleration and velocity dependent torques no(t) scparatcly from the
gravitational torques g(f(t)). Suppose further that the maximum and minimum torque limits,
ot = (nf,nF,...,n}) and n— = (n{",ng,...,n) respectively, are constant throughout
a movement (Ordinarily one would presume nt = —n—.) Later we consider velocity
dependencies as in clectric torque motors.

At a given position 8(t) of the manipulator, some of the actuator torque is required for
postural support of the manipulator only. In terms of what torque capability is remaining
to actually generatc a movement, we formulate new cffective torque limits by absorbing the
gravitational torques into the torque limits, i.e.,

nt(t) =nt —g(8(t)

n~(t) =n" — g(8(¢))
Note that the torque limits are now position dependent, and hence have been writien as
functions of time.

Because we are looking for a time scaling value ¢ that brings the trajectory within the
torque limits, a slight alteration of (7) is required. Since (7) holds for all times, we can write
fa(t/€) = e*ng(t) and the torque limits for the new trajectory as it (t/c) = n(t). We require
that for the new trajectory fig(t/c) be bounded by i (t/c), which is done by finding the ¢ that
bounds ¢2n,(t) by nL(t) according to the following procedure.

For each time ¢t and joint i, we find the minimum and maximum scaling values of ¢? that
satisfy the torque limits by solving (7) together with the computed torques n“‘ﬂ and the torque
limits n;~(t) and n;"(¢). The result will be denoted by the interval [c2— (t), ¢; T (¢)). where any
scaling value within this interval is a permissible movement speed for this joint at this point in
the trajectory. This scaling interval, however, may violate constraints at other joints and times,
and the permissible range of ¢2 values for the whole movement is found by intersecting all such

intervals:

(8)

2=, 2] = Nled—(8), i+ (0] (9)
it
We can then choose any valuc in the final interval [¢3—, ¢2+) to generate a movement which
satisfics the actuator constraints.
To determine [¢2(¢), c2*+(t)). there are three cases.
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Case 1: 07 (t) > 0, n;(t) < 0.

Condition (1) )
neift) > 0 0 n (6)/nailt)
nai(t) =0 0 0
nai(t) < 0 0 ny(8)/nailt)

Case 2: n}F(t) > 0, n;(t) > 0.

Condition ) ()
nailt) >0 n7(t)/malt)  ni(6)/mait)
ne(t) < 0 unrealizable

Case 3: n]{t) < 0, n;(t) < 0.

Condition 2~ (t) t(t)
nai(t) 2 0 unrealizable

ni(t) < 0 ";’. (t)/nailt) n(8)/nailt)

To explain these cases, consider first casc 1. The minimum valuc of ¢? is zero because
nai(t) = 0 falls within actuator bounds and ¢? must be non-negative. If ng(t) > 0, then
the appropriatc torque limit for comparison is n?’ (t). becausc time scaling can change a
torque magnitude but not a sign. The maximum valuc of ¢? is then determined by the ratio
nt(t)/nai(t). Note that when ngi(t) < n¥(¢), then ¢ > 1 and it is possible to speed the
movement up and still satisfy actuator constraints. When ngi(t) > nF(t), ¢ < 1 and the
movement must be slowed down. To complete case 1, if ng;i(t) < 0, the appropriate torque
limit is n;~(t) and the maximum value of ¢ is n;~(t)/ne(t).

In case 2, if ng;(t) < 0. then this movement is unrealizable at any speced. The actuator
can producc only a positive torque, but a non-positive torque is required by the movement.
Put simply, thc manipulator cannot even hold itself up at this position. Of coursc manipulator
actuation is ordinarily designed to counteract gravity, but this actuation may become inadequate
if 100 heavy a load is picked un. For ng(t) > 0, the maximum movement speed is determined
by the ratio n; (£)/nei(t) and the minimum by n(¢)/ne(t). It is possibic that ¢2—(t) > 0,
which says that there i$ a minimum non-zero speed at which the movement is realizable. Also
it is possible that ¢2—(¢) > 1, so that the movement can be realized only by speeding up. Case
3 is analogous to casc 2, except that the roles of n¥(t) and n;~(t) are reversed due to sign
change.

The intersection of all the intervals [¢2~(t), 2+ (t)) may be null, with incompatible scaling
requirements at different parts of the trajectory. This movement is then unrcalizable at any
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Figure 1
A planar two-link manipulator.

speed. If c4— > 1, then the movement should be speeded up by at least a factor ¢2—, while
if 2t < 1 the movement should be slowed by at least a factor ¢2t in order to produce a
realizable trajectory. Having chosen a ¢? value, the inverse dynamics can be simply recomputed
from the old values of n,(t) and g(8(t)) as follows:

o (1) = *na(ct) + g(o(ct) (10)

: ; The acceleration and velocity torques arc amplitude scaled, the gravity torque is added in
' scparately, and both together are time scaled. Speed change can therefore be accomplished
without dynamics recomputation.

4. Examples

! - This algorithm will be illustrated for straight-line movements by a two-link planar manipulator
‘ (Figure 1); the algorithm is quitc easily applicd to manipulators with more degrees of freedom.
_ c ‘This manipulator has two rotary joints with joint angles 85 at the shoulder and 8 at the clbow.
4 ‘The axes of rotation are both dirccted along the z-axis, so that the manipulator only generates
Py movement in the z-y planc. Gravity is presumed to act in the negative y direction with
v magnitude g. The length, mass, and moment of inertia about the proximal joint for cach link
] . are designated as l;, m,, and I; respectively, where ¢ = 1 refers to the upper arm fink and
t = 2 refers to the forcarm link. Each link is a uniform cylinder with radius R.
! The cquations of motion arc 2]

. ‘ mzlz N mglz
. ng_o,(l 3 Matha 21’ cosly -+ _TZ)+02(1,+__4_3)

I
) o
i _ i +mzl’ 252 gin gy 4 | cos(0 + 82) (11)
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l lz
ny = 01(11 + I + malyly cos by + "-"—-;-"P— + mz‘?)
l’ m:hlz
o B+ —— + "2 costy (12)

—_ m’;‘h bg sinf; — mzlllahaz sin §;

+(m2 3 cos (8, + 6;) + l;( 2‘ + mz) 00091)9

A common class of manipulator trajectories are straight line movements of the tip, ie.
v — vo = (z — zo)(y1 — ¥o)/(z1 — zo) for beginning and cnd positions of the tip (zo, yo)
and (z1,y1) respectively. To solve the inverse dynamics, it is required to transform from the
position, velocity, and acceleration of the tip to the position, velocity and acceleration for each
joint angle. These inverse kinematic cquations arc presented below [2):

2+y -84

cosfp =

2y
— -1 -y_ — —1 ‘2 sin ,3 )
b1 = tan (z) tan (11+lzc°l02 (13)
b, - 1 [13 cos(fy + 03) lasin{d + 03)][#] (14)
:‘1 + ég lilasin§3{ —ijcosl, —Ily8in 6y 7
51 — 1 [la 005(01 + 02) lz lin(ﬂl + 03)][§]
4, + 8, " lylasin0y{ —I) costy —lysindy ¥
1 [lilacosdy [ ] 0 (15)
higsin@al —I}  —lilzcosfaf|(d; + 65)?

Three different movements are illustrated in the examples below: one that must be slowed
down, onc that must be sped up, and one that is unrcalizable at any speed. For the link
paramcters, we have set [y = I3 = 0.5 meters, my =mg = 1kg, [} = I = mi}/12 4
myR?*/4, R = 0.11;, and g = 9.8 m/sec3.

4.1 A Movement Whose Speed Is Scaled Down

A straight fine motion from (zo, yo) = (0.5, —0.5) to (z1,y1) = (0.5,0) is to be generated
at a constant velocity of 4 meters/sccond The torque fimits for the actuators are sct at n;" =
—ni = 6.9 kg'm, and ny = —ny" = 2 kg:m. A comparison betwecn nt(t), n(t), and
ny(t) is prescnted in Figure 2.
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Figure 2 . ‘

Tblg:;;ue profiles for a constant-velocity, straight-line trajectory of 4 m/sec from (z,y) = (.5, —.5) to (.5,0)
when nt = —n7 = 6.9 kg-m and n} = —n; = 2 kg-m. (a) Joint 1 minimum and maximum torques,
ny (t) and n"(t), and the velocity and acceleration torque n.,,(t) are shown versus time: (b) corresponding
torque profiles for joint 2.

Joint 1 is represented by Figure 2a, where the torque requirements nqy(t) for the complete
movement fall within the modificd actuator constraints ny(t) and n;' (t). For joint 2 in Figure
: 2b, however, the required torque nqa(t) falls below the lower actuator bound ny (t) for the

{ initial movement segment. This suggests that the movement must be slowed down. By scaling

the torque nga(t) by a factor ¢ < 1, the clements of the new torque fig2(t) become larger

{ (i.c., less negative). The fig2(t) curve could then be made to lic completely above the ni™(t)
curve, as if it had been shifted upwards.

Carrying out the computations in (9), it is found that [¢?—, c>t] = [0.582,0.745]. The value
¢+ = 0.745 ariscs from joint 2 at time t = 0.035 sec., whilc the value ¢~ = 0.582 ariscs
from joint 1 at the same time. Thus the fastest speed at which this movement can be executed
is determined by 4/0.745 = 3.45 m/s. On the other hand, therc is a non-zero Jower speed
limit, 4¢/582 = 3.05 m/s. Examining Figure 2a, if the movement is slowed too much, then
the ngy(t) curve is displaced upwards, intersecting the nf"(t) curve and cxceeding that upper
torque limit.

4.2 A Movement Whose Speed Is Scaled Up

As shown above, if the movement speed falls under 3.05 m/s, then the actuator limits are
exceeded. This condition is verified herc by considering the same movement but exccuted
at 2 m/s and by working through the algorithm. Figure 3a shows that the shoulder torque
na1(t) exceeds the upper actuator bound ny (t) at the beginning of the movement. Calculations ]
show that for joint 1, ¢~ = 2.329 at ¢t = 0.035 s, so that thc movement must be sped up
by 2v/2.329 = 3.05 m/s as predicted. This would push the ngy(t) curve down until it is
completely beneath n) (). ‘The curve ny(t) is the same as in Figure 2a, but has been left out
here to allow an cxpanded scale.
There is an upper limit of ¢3+ = 2.981 at ¢t = 0.035 s as well, determined this time by
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Torque profiles for a constant-velocity, straight-line trajectory of 2 m/sec with other conditions (he same
as in Figure 2.

20
[

G ‘_Nmuc)
g0 30 100 150 ;o_q_f-‘:i
ES

o

ts- ny

-3

Figure 4

Joint 2 torque profiles for the same movement as in Figure 3 except with ny = —n; = 1 kg-m.

joint 2 (Figure 3a). If the curve nqg(t) is pushed down too far, it will violste the lower bound
ny (t). Thus the fastest this movement can be cxecuted is 2v/2.981 = 3.45 m/s, in agrcement
with the first movement analysis,

4.3 An Unrealizable Movement

For the third movement, the conditions arc the same as for the second movement, but the
sccond actuator limits are now changed to n;" = —ny (t) = 1 kg-m. As bcfore, the actuator
limits on joint 1 (Figure 3a) require that the minimum specd for this movement be determined
by ¢~ = 2.329. But Figure 4 shows that the joint 2 actuator limits prevent any higher speed
scaling than ¢+ = 1.522, because nqg(t) would fall below ny (t). Thus there are incompatible
scaling requirements, and this movement cannot be realized at any specd.

S. Velocity-Dependent Motor Limits

We have assumed above that the actuator limits nt and n— are constant throughout the motion,
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In reality, the maximum actuator torque oftcn docs depend on velocity, such as for electric
torque motors. For the casc of a low-inductance motor with no dissipative effects [3),

V =IR+Kyw ' (16)

where V is the motor voltage, I is the motor current, R is the motor resistance, w is the
rotational speed of the motor, and K, is a constant of proportionality for the back-EMF term.
‘l The torque n produced by the motor is directly proportional to current:

n= Kl (17)

In voltage-control mode, for example in a chopping circuit where duty cycle is modulated,
there is an upper voltage limit V.o, which can be applied to the motor. Because of the back-
EMF, the maximum current, and hence the maximum torque, is velocity dependent. Assuming
a gear ratio of 1 (otherwisc absorb the gear ratio into K, ), then w = &, where 4 is the velocity
of the joint actuated by the motor. Combining (16) and (17), and absorbing the gravity torque
g9(8(t)) into the motor limit,

]
i K. .
2t () = 3 (Vimez — Ko0(2)) — 9(8(2)) (18)
R
{' If the trajectory is to be time-scaled by a factor ¢, then
A0 = 52 Vinae — Z22ci(et) — olo(ct) (19)

where unlike the dynamic terms there is a lincar dependence on the scale factor ¢. When solving
for the scaling that satisfics the upper bound, again we need the relations fig(t/c) = ¢?n,(t)
and At (t/c) = n(t). There is a quadratic cquation in ¢ when it (t/c) is replaced by enq(t)
in (19):

YO o

1a(t) + T2ELedt) — T2 Vi o+ 9(0(8) = 0 (20)

When solved,

' 2
fe 2ni(t)(—— K';?K" B(t) + \[(K,}.?K,, é(t)) + 471.,(15)(%,2 Vinaz — g("(t)))) (21)

The root which gives the largest positive ¢ should be chosen for ¢2t. As before, it is possible

_',;z. that there is no positive (or even rcal) root, which indicates that the trajectory is unrcalizable.
We may also solve (21) with Vin to find ¢2—. The procedure for determining the appropriate
- trajectory scaling factor then follows that indicated by (9).

The back-EMF can be considered a form of viscous friction, but if there were any additional
viscous friction at a joint or actuator, it could be handled in the same manner. As regards
Coulomb, or sliding, friction, it could be subtracted from the motor torque limits depending
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on the direction of movement, ic., sliding friction torque = —n,sgn{d(t)). Any actuator -4

springiness, which is position-dependent, could also be rcadily absorbed into the torque limits.
Motor inductance unfortunatcly seems to present an intractible problem, due to the need to
find the time derivative of the dynamic equation (3). T ’

¥ Conclusion

| Trajectory planning and inverse dynamics may be cfficiently coupled to reflect the exact influence
. of actuator torque limits on cxccution capability. By factoring out gravity, a time-scaling property
of manipulator dynamics readily allows a realizable speed of movement for the whole trajectory
10 be determined if there exists one. Rather than recomputing the dynamics corresponding to
a new trajectory speed from scratch, the dynamics of the new trajectory is obtained by a simple
linear combination of components of the original trajectory dynamics.

Velocity-dependent actuator limits, as well as various sources of joint friction, can be
accommodated in this scheme. An important sidc effect of the dynamic time scaling property is
that a ubiquitous assumption in manipulator control, namely that the velocity-product dynamic

! terms are significant only at high speeds of movement, is false: these terms have the same
' significance relative to the acccleration dynamic terms for all speeds of movement.
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